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J. Phys.: Condens. Matter 7 (1995) 9465-9473. Printed in the UK 

Mach shock waves and surface effects in metals 

K Griepenkerl, A Schafer and W Greiner 
lnstitut fiir Theoretische Physik, lohann Wolfgang Goethe-Universitit, Frankfurl am Main, 
Germany 

Received 20 September 1995 

Abstract We calculate the electric potential induced by a fast ion in a conducting solid close 
to its surface. The ion velocity is supposed to exceed the Fermi velocity in the mewl: thus 
Mach shock waves are induced. Calculations are done within an electron gas approximation: 
the surface effects are described according to the 'specular reflection model'. 

1. Introduction 

When a fast projectile emerges from a solid target, electrons are emitted from its surface. 
A small fraction of these electrons are emitted by the shock wave associated with the 
ion. If the projectile velocity exceeds the Fermi velocity of the solid, the angle between 
the emitted shock electrons and the ion is determined by the Mach angle in the solid 
[l ,  21. In a first approximation, these electrons are emitted perpendicular to the front of 
the Mach shock cone. The emission of such electrons was confirmed experimentally 131. 
The detailed experimental investigation and theoretical analyses of their properties looks 
promising as regards study of the dielectric properties of solids and their surface properties. 
The theoretical description requires two steps. First the electron-transport properties in an 
idealized solid including the surface effects have to be calculated. In a second step, specific, 
phenomenological corrections will have to be introduced to describe additional effects of a 
realistic surface. This second part is not dealt with in this contribution. For example it was 
observed experimentally that eyen a very thin layer of light atoms changes the properties of 
the emitted electrons. In this contribution we deal with the first part of the problem, namely 
the idealized case of a perfect surface. 

The canonical approach for a consideration of surface effects starts by finding an 
appropriate dielectric function E .  This function has the form E(T ,  7'. t )  and can only be given 
implicitly in the form of integral equations which makes the further analyses of dynamical 
properties very cumbersome. Thus, this approach.is not feasible for practical calculations. 
Instead, we choose the specular reflection model 141, in which the electrodynamic properties 
close to the surface are approximated by the bulk dielectric function with appropriate 
boundary conditions. 

We assume the surface between the medium and the vacuum to be at z = 0. The 
vacuum is chosen to lie to the left (z < 0) and the medium to the right see figure 1. 

A full electrodynamic description of this problem can theoretically be given once the 
dielectric function E is known. In the specular reflection model all effects of the surface 
are absorbed into the definition of a surface charge U such that the remaining dielectric 
function is that of an infinite homogeneous solid E = S(T,  T' ,  r ,  t') + E(T - T', t - t'). The 
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Figure 1. The problem under consideration: the projectile moves from leh to right, the surface 
is located at z = 0. 

procedure is analogous to the introduction of mirror charges in classical electrostatics. In 
this framework the potential qhnd and the electron density Vind induced in the medium can 
be calculated as functions of B(K, w),  which in turn are defined by the boundary conditions 
for the electric potential and the dielectric displacement at the surface (see equations (9) 

For comparison and illustration we start by discussing the homogeneous case (without 
a surface) and discuss afterwards the necessary modifications for including the boundary. 
In the homogeneous case the equations for q n d  and @jnd read 

and (IO)). 

ei(w/v)f 
Vind(i9 p )  = 2 s m d K  KJo(Kp)/+mdw 7 

(*) 0 -m E k 4  

@ i n d ( i r  P) = 7 l m d K K J o ( K p ) /  dw k2B(k,w) 
(k) 

(1) +m &w/u)i 

where the projectile trajectory is taken to be z = ut + i , x  = 0, y = 0 with 2 being the z- 
coordinate in the projectile rest system and K = being the transverse momentum. 
The tilde signifies the Fourier transform, which we use in the form 

- 
f ( k )  = - j+mcix e-'kXf(x). (2) f i  --m 

In this paper we will use the hydrodynamic dielectric function 

where up is the Fermi velocity and w,, the plasma frequency which is treated as an empirical 
parameter. 

The electric potential and the electron density in the bulk solid calculated with this E are 
shown in figures 2 and 3. The density clearly shows the Mach cone. For the potential, the 
wakes are nearly perpendicular to the ion trajectory and a cone structure can only faintly 
be discerned. 

2. The treatment of surface effects 

In order to describe the surface, a surface charge U is introduced such that 6YT.t) = 
u(x, y .  0 H z )  and 

E(K,o) = dRdt  e-i(K'R-wi) a(+. Y ,  f). (4) s 
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Figure 2. The potential induced in a solid by a projectile. U on AI at E,"" = 0.93 MeV U-', 

This surface charge induces the potential 

(5 )  
Z(K,o) +- 1 

JMed(K, z .  o) = - GEo i, d k  eikZz - &(le, w)k2'  

To proceed we shall treat the two cases separately starting with the first one: 

(i) projectile in the vacuum (t < 0). potential in the solid (z > 0); 
(ii) projectile in the solid (f > O ) ,  potential in the solid ( z  > 0). 

In the absence of any charge the potential in the vacuum decays exponentially with 
increasing distance from the surface (far from a neutral solid there is no potential). The 
Poisson equation in the left half-space without the external charge (the projectile) and its 
solution read 

(8: - KZ)JVac(K, z, w )  = 0 JVaC(K, z, U)  = A ( K ,  o)eK2 (6) 

where the boundary condition limz+--bz(z.) = 0 was chosen (note that K z  is negative). 
When the projectile is in the vacuum its charge density vex = Ze8(r - ut) induces the 

potential 

ze,, &o/u)z 

p ( K ,  2.0) = (7) ( z J I ) ~ ~ ~ E ,  ~ 2 ~ 2  + 02' 
in the vacuum. Thus the complete solution for the potential in the left half-space reads 

zeU ei(o/u)z + A ( K ,  oleK'. (8) 
( 2 ~ ) 3 1 2 ~ ,  KW + O2 

J Y K ,  z, w )  = 
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Figure 3. 'She charge drnsily conespunding 10 lipurc 2. U on AI a i  P:,,,. = 0.93 MeV U-'. 

In order to determine the two parameters A(K, w )  and u ( K ,  w )  we require at the boundary 
z = 0, i.e. 

Zeu 
+ A  (9) 

(10) 

dkz - - @ ( K , w )  +m 

% Lm E(k, w)k2 (2n)312(K2u2 + w2)c0 

i Z e o  - _  - -EoAK. 6(K, w )  
2 ( 2 n ) 3 ~ 2 ( ~ 2 u 2  + w 2 )  

We make use of the cylindrical symmetry of the problem and of the relation [5 ]  

d@k e*ikr'LCoSQL = 2nJo(k,r~)  r 
to simplify equations (5 )  and (8): 

@ind(P. Z.  1) = @""(P, 2 ,  t) f @Med(rx t) 

e-iwf+Kz i 2JZ;;wz0 - 2nv 
w2 + K2U2 6 - 2KZo 

VX Ze / d K  K dw Jo(Kp) @ ( P , Z . t )  = 

6 (r,O=- 
(2n)2co 

where 

ZAK, w )  = 

(2n)5/2~o 

/ d K  K Jo (KR) /dw e'"'@(K,w)Z,(K,w) (11) 
1 Mcd 

+m eikz i  +15 eikzz 

Io(K, w )  = lim (12) 1, dkz k2E(k,o) 
In the momentum integrals (11) and (12) an upper cut-off should be introduced for 
the following physical reason. At large momentum the treatment of the medium as a 
continuum is invalid as individual single-particle excitations become important. Therefore 

W O +  Lm dkz k2E(k, w )  ' 
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all momentum integrals should be cut off at a critical value kc. The results should be rather 
independent of the precise cut-off used. as is indeed the case; see figure 4. We find in fact 
that letting the cut-off go to infinity affects our results only marginally, except for in a case 
discussed below. Our results are also insensitive to the ratio of the cut-offs for kz and K. 
To simplify our calculations we therefore take the opportunity of letting the kz cut-off go 
to infinity, which allows us to calculate &(K, w )  analytically. 

It turns out that the w-integration cannot be done simply by calculating the residues 
for a suitable contour because I,(K,w) and l o ( K , o )  have cuts on the real axes and a 
discontinuity on the imaginary axes, proportional to O(Rk,). The integration was therefore 
done by determining numerically the principal values. For the k,-integration this implies 
that only real w have to be considered as parameters. Under these circumstances, four cases 
have to be treated separately: 

(1) w2 > m i  + u Z K Z ,  w > 0; 
(2) w2 > m i  + uZK2, w < 0; 
(3) w2 < w: +uZK2, w > 0: 
(4) w2 < w i  + u2KZ, w < 0. 

The resulting potential is @Med = @pd + @pd, where 

e-KZSw - e-WZ/UwjuK 
X (13) 

(iw + Kv) [w { -(1+ 6 s  +U;]  + 6 w ; u K ]  

This double integral is solved numerically, where for the w-integation.the principal 
.~ value is treated according to 

The derivatives f' were computed analytically with the help of Mathematica [6]. Only 
the roots of w without imaginary parts are considered. As these roots wi are functions of 
K, it happens that two of these functions intersect for some K E [O, k,]. At this point, two 
poles of first order in o give one pole of second order: thus the w-integration, even in the 
principal-value interpretation, no longer makes sense. Looking at the two real functions 
oi(K), it is evident that one of the poles is the plasmon mode wp of the solid. The 
intersection is due to the fact that an interaction between different modes of the solid is 
not accounted for in the choice of the dielectric function. The physical interaction between 
these two collective modes will avoid the double pole due to the Landau-Zener effect, but 
this interaction is not included in our model. As calculations show that the potential only 
varies slightly with a variation of the upper integration limit in the region [0.6kc, 0.7kc], we 
conclude that the contributions to the potential mainly come from the region K E [O, 0.7kcl, 
so we limit the integration to this region thus avoiding the troublesome double pole. We 
assume that the error introduced by this ad hoc procedure is relatively small. For small K 
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Figure 4. The time dependence of the potential at : = 0. The two curyes differ by 10% in 
cut-off paramerer. 

one of the poles disappears, so there is no problem. The resulting potential for an aluminium 
target, a uranium ion, and the kinetic energy 0.93 MeV U-' is shown in figure 5. The time 
dependence of the potential at z = ~ O  is shown for different K-integration boundaries in 
figure 4. The latter figure demonstrates the insignificance of the precise value chosen for k,. 

If the projectile is in the solid the treatment is completely analogous. The potential in 
the solid is given by 

In order to fulfil the requirements of the specular reflection, a mirror charge Z e  S(z - ut)  
is introduced [4]. Thus, the effective charge is 

p ( r . t )  = Z e S ( x ) S ( y ) { S ( z  - u r ) + S ( z + u r ) } + S ( z ) u ( ~ , y , r )  
and the Fourier transform yields 

Ze c o s ( ~ z ) + 6 ( z ) ~ ( K , w ) .  

The contribution of the surface charge to the potential is given by 
1 

EO 

B(K, Z. 0) = - 
(Zn)3/2u 

E * = -- S(Z) U ( X ,  y,  f )  

where * stands for a convolution. Thus, 
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Potential, U on AI at 0.93 MeV/u, ion at z=-251.8 a, 
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Figure 5. A three-dimensional representation Of the potential; the projectile is in the vacuum at 
z = -251.8 an. 

Potential U on AI, 0.93 MeV/", ion at 5.037% 
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Figure 6. A three-dimensional representation of the potential; the projectile is in the target at 
z = 5.037 a. ~~ 

and the effective potential is 
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Potential U on AI, 0.93 MeV/u, ion at 5.037% 

Figure 7. A contour plot of the potentid from figure 6. 

Potential U on AI, 0.93MeV/u, z=lao, p=O.lao 
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Figure 8. The time dependence of the potential L z = 0. The projectile s t a s  at z = 5.031 a0 
for I = 0. 

For the potential in the vacuum we insert again JvaC = AeK2. Thetwo parameters A(K, w )  
and B(K,w) are again determined by the requirement of continuity of 4 and D at z = 0. 
The procedure in this case is straightforward and follows the lines of the case of the projectile 
in the vacuum--only, in this case, there is no double pole for 0 Q K Q kc. 

The potential is shown for a specific target and ion in figures 6 and 7. In addition, the 
time dependence of the potential at z = 0 is shown in figure 8. 
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We have developed a model which allows us to calculate the dynamical potentials and 
electron densities in a solid and outside of it, during the passage of a fast ion. From 
our time-dependent electron densities we can already calculate the corresponding electron 
currents. However, these cannot yet be compared with the observed emitted electrons as we 
still have to include corrections due to the less than perfect properties of realistic surfaces, 
which will be the topic of future investigations. 
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